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I. INTRODUCTION
The advancement of autonomous vehicle

technology has been on a steady rise, with
projections indicating that a substantial portion of
vehicles on the road will achieve full autonomy by
2035 [1]. As the journey towards complete
autonomy unfolds, present-day vehicles are
equipped with Advanced Driver Assistance
Systems (ADAS). Within the realm of autonomous
vehicles, ADAS plays a pivotal role, encompassing
a spectrum of applications from critical safety
functions to less intricate parking systems [2], [3].
An integral aspect of driver support systems is the
detection of both static and dynamic objects to avert
collisions. This emphasis on collision prevention
ensures the safety and security of both vehicle
occupants and pedestrians, a paramount goal over
the years. Conventional autonomous vehicles often
employ a range of sensors, including RADAR
(Radio Detection and Ranging), LiDAR (Light
Detection and Ranging), and optical cameras, to
detect and localize objects. However, utilizing all
these sensors for less critical scenarios, such as
parking or low-speed situations, might not be cost-
effective. Despite a decline in the cost of sensors

like LiDAR and RADAR, they remain relatively
expensive [4]. Therefore, in such cases, the
integration of cost-effective sensors like Cameras
and UltraSonic sensors becomes more pragmatic. In
situations where cost is a consideration, 2D vision
sensors like pinhole cameras or fisheye cameras can
be effectively employed for object detection [5].
Fisheye cameras, in particular, provide a wider field
of view around the vehicle compared to pinhole
cameras. Consequently, fisheye cameras find
application in systems like surround view setups [6],
[7], [8]. The evolution of Deep Convolutional
Neural Networks (CNNs) has significantly
enhanced real-time object detection accuracy.
Notably, end-to-end learning approaches have
revolutionized performance, demanding minimal
training in the domains of image analysis and
computer vision [9-11]. To further optimize the
computational efficiency of generated CNN
architectures, tools like TensorRT can be leveraged,
facilitating real-time object detection across all car
cameras on a single computing resource.
Traditionally, researchers have delved into
handcrafted feature learning methods. Commonly
utilized features include Haar features, Histogram
of Oriented Gradient (HOG), Local Binary Pattern,
and Integral and Aggregated Channel Features.
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Object detection and localization techniques
employing these features are frequently applied to
detect pedestrians and vehicles. In the automotive
sector, researchers have explored diverse
algorithms to achieve real-time object localization
and detection. For instance, in [12-15], a single
rear-view fisheye camera was used to identify
vehicles by implementing Support Vector Machines
(SVM) within selected candidate regions. Another
approach by Jiong et al. [16] employed an ensemble
classifier, where a framework incorporating
Random Forests and a feature selector was
proposed for pedestrian detection. While successful
in identifying smaller pedestrians, this framework
struggled with occluded pedestrian detection,
leading to moderate accuracy. This study focuses
on evaluating the feasibility of state-of-the-art
object detectors for fisheye image object detection.
The research is conducted on a vehicle equipped
with a sensor setup illustrated in Fig. 1. The vehicle
is outfitted with two pinhole cameras, one each at
the front and rear, along with four fisheye cameras,
one on each side. Additionally, the vehicle
incorporates Ultrasonic sensors at both the front and
rear. A key challenge with fisheye data lies in the
distortion introduced during dewarping of fisheye
images. Unlike regular pinhole camera images
where objects, such as pedestrians, appear
undistorted, fisheye images exhibit pronounced
distortion in order to provide a panoramic view of
the surroundings. Consequently, individuals
captured on fisheye images exhibit varying
proportions and dimensions. Those in close
proximity to the camera appear stretched and
skewed on the edges, as depicted in Fig. 2, while
those at a distance appear smaller than usual. Hence,
the detection of objects within fisheye images
presents a formidable task. To achieve real-time
pedestrian detection, this research evaluates three
state-of-the-art object detectors: YOLOv3 [17],
Tiny- YOLOv3 [18], and ResNet-50 [19],
analyzing the trade-off between accuracy and
performance of these chosen detectors.

Fig. 1. Pedestrian detection on a fisheye image
[16].

II. METHODOLOGY

An easy way to comply with the conference
paper formatting requirements is to use this
document as a template and simply type your text
into it. A basic Artificial Neural Network (ANN) is
commonly referred to as a shallow network.
Networks with numerous layers between input and
output configurations are recognized as Deep
Convolutional Neural Networks (DCNNs). This
study delves into three specific types of Deep
Neural Networks (DNNs): YOLOv3 (You Only
Look Once) [17], Tiny-YOLOv3 [18], and Residual
Network (ResNet) [19]. Furthermore, machine
learning techniques find widespread application
across various domains such as image processing,
computer vision, natural language processing,
medical image analysis, and more [7- 33].
A. ResNet-50
The challenge with deeper networks lies in their

accuracy plateauing and subsequently declining
significantly as the network's depth increases.
ResNet addresses this issue by acquiring and
incorporating a "residual" component, which is then
added to the existing feature instead of attempting
to learn the entire complex feature anew. As a result,
this approach leads to reduced complexity in the
learning process compared to the straightforward
learning of features.
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B. YOLOv3
YOLOv3 stands as an advanced object detection

system designed to achieve high accuracy while
maintaining real-time processing capability.
YOLOv3 represents an evolutionary step from its
predecessor, YOLO, which operates as a singular
neural network, enabling the detection of objects in
a single pass. This efficiency is derived from
YOLO's approach of treating detections as a
regression task, uniting image pixels to generate
bounding box coordinates and class probabilities
[26, 32]. YOLO divides an input image into a grid
arrangement of dimensions S x S, where each grid
cell is responsible for detecting a maximum of one
object. When an object's center lies within a
specific grid cell, that cell takes charge of localizing
the object. Additionally, every cell predicts a fixed
number (B) of bounding boxes and a number (C) of
class probabilities. In simpler terms, upon inputting
an image, YOLOv3, operating as a sophisticated
CNN, generates an output consisting of a vector of
bounding boxes alongside corresponding
confidence scores for each predicted class.
C. Tiny-YOLOv3
Tiny-YOLOv3, a derivative of YOLOv3, lives up

to its name by being substantially smaller in scale.
It boasts fewer than half the number of layers found
in YOLOv3, resulting in significantly reduced
memory usage during operation. Despite its
compact design, Tiny-YOLOv3 maintains
comparable accuracy to YOLOv3, all while
achieving a higher frame rate. Comprising 13
convolutional layers— markedly fewer than
YOLOv3—and 8 max-pooling layers, Tiny-
YOLOv3 stands as a streamlined variant. The main
distinction between the two networks lies in their
structure. YOLOv3, featuring a Feature Pyramid
Network (FPN)-like arrangement, is tailored for
object detection across three different scales.
Conversely, Tiny-YOLOv3 focuses on detecting
objects across two scales. Additionally, Tiny-
YOLOv3 incorporates fewer skip connections
compared to YOLOv3. Nonetheless, both networks
operate on similar foundational principles.

Fig. 2: Layout of the testing vehicle: Four
fisheye cameras (indicated in red with a
blue border), two pinhole cameras, and
Ultrasonic sensors. [11].

D. Fisheye Image Dewarping
A fisheye camera is employed to create an all-

encompassing view of the environment, achieved
through inducing pronounced visual distortion. In
the context of autonomous vehicles, these fisheye
cameras are frequently positioned around the
vehicle to generate a 360-degree perspective of the
surroundings. To rectify the distortions inherent to
fisheye images, a process of dewarping is necessary.
In Figure 3, a standard fisheye image is juxtaposed
with its dewarped counterpart. Extensive research
has been conducted across diverse scenarios to
address fisheye image dewarping. In this context,
we delve into the dewarping technique employed
within the Open Source Computer Vision (OpenCV)

Library, providing a broad overview.
Fig.3 A fisheye image

Figure 3 illustrates a test image featuring a
black and white chessboard pattern. These
images serve as inputs for the calibration
algorithm. The architecture of the algorithm is

http://www.ijcsejournal.org


International Journal of Computer science engineering Techniques-– Volume 8 Issue 3, 2024

ISSN: 2455-135X http://www.ijcsejournal.org Page 4

designed to identify distinct points like straight
lines and square corners. These identified
points are then correlated with real-world
coordinates, and distortion coefficients are
deduced by approaching this dataset as a
mathematical challenge. To address the
current challenge, an experimentalapproach is
adopted, involving the assessment of three
Deep Neural Networks (DNNs) on the
acquired fisheye dataset. The selected DNNs,
namely YOLOv3, Tiny-YOLOv3, and ResNet-
50, are evaluated for their pedestrian
detection performance.
E. Data Collection

Video sequences were gathered by driving the test
car on various roads using all four fisheye cameras.
These sequences, initially in "h264" format, were
transformed into individual frames in "jpeg" format.
Each frame exhibited dimensions of 1080x1280
pixels in the color space. An initial collection of
30,000 frames encompassed imagery from all
cameras. However, upon thorough examination,
over half of this data proved non-usable due to the
absence of pedestrians and the small dimensions of
distant objects. Consequently, an additional 70,000
frames were obtained from bustling streets, utilizing
fisheye cameras to guarantee the inclusion of at
least one pedestrian in each frame and to ensure
closer proximity of objects to the car. In total,
approximately 100,000 frames were amassed, but
only 15,000 frames proved viable for the learning
process. Worth noting is that the data collection
locale experienced over 16 hours of sunlight daily
during the gathering period, thereby rendering the
dataset limited to a single environmental setting.

1) Image Dewarping Image dewarping involves
rectifying the perspective of an input image to
eliminate the lens-induced distortion effects. In this
case, all 15,000 images underwent dewarping to
restore them to their undistorted forms. The applied
dewarping procedure resulted in an output image
size of 2160x2560 pixels, achieved from an initial
fisheye image dimension of 1080x1280 pixels.

2) Data Labeling The complete set of 15,000
dewarped frames underwent labeling through
utilization of a graphical annotation tool. For every

individual image, a corresponding annotation file
was generated. Each of these annotation files is
composed of rows, where each row corresponds to
an object present within the image.

3) Training The acquired dataset was partitioned
into training and testing subsets, adhering to an 80-
20 distribution. From the dewarped fisheye dataset
comprising 15,000 images, 12,500 were allocated
for training, and 2,500 for testing. These selections
were randomized, yet subject to a constraint:
images from the same video sequence could belong
to either the training or testing set, but not both. For
training, each network underwent transfer learning,
a choice driven by the aim to reduce both training
time and computational demands. This approach
also considered the relatively smaller number of
images available for training the neural networks.
Training occurred on a multi-GPU setup
encompassing two Tesla K80 GPUs, each with a 12
GB RAM capacity. Detailed information regarding
parameter selection and training specifics for each
network is provided in subsequent sections.

YOLOv3 The network architecture for YOLOv3 is
specified in reference [15]. The network's detectors
and convolutional layers were adjusted for the
purpose of localizing a single class, specifically
pedestrians. In the training process, we initiated
with a pre-trained model, as mentioned earlier. This
model was then trained on the fisheye training
dataset utilizing the pre-existing weights. Images
were resized to dimensions of 608 x 608 pixels and
inputted into the model iteratively until the cost
value stabilized. To ensure the training process, a
batch size of 1024 was selected, accompanied by a
consistent learning rate of 0.001. Despite the
capability of the chosen GPU to accommodate
larger batch sizes, we opted for a maximum batch
size of 1024, as larger batch sizes exhibited
suboptimal performance for Deep Neural Networks
(DNNs). The network underwent training for 200
epochs until the point where the loss value saturated,
reaching an approximate training loss of 0.38..
Tiny-YOLOv3 The network architecture of Tiny-
YOLOv3 is delineated in reference [10]. The
network's detectors and convolutional layers were
similarly adjusted to identify and localize a singular
class, pedestrians. Employing a comparable
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approach to YOLOv3, we initiated training using a
pre-trained model. Subsequently, the network was
trained on the fisheye training dataset utilizing these
pre-established weights. The dimensions of the
fisheye images were altered to 416 x 416 pixels,
and the resized images were then employed as input
for the Tiny-YOLOv3 model. In line with YOLOv3,
a batch size of 1024 was selected, accompanied by
a learning rate of 0.001. The network underwent
training for 530 epochs until the loss value
stabilized, ultimately culminating in an approximate
training loss of 0.42. ResNet-50 The network
architecture of ResNet-50 is outlined in reference
[11]. For our implementation, we substituted the
feature extractor of YOLOv3 with ResNet-50,
configuring the YOLOv3 detector to focus on a
single class—pedestrians. To initiate network
training, we utilized pre-trained weights from the
ResNet-50 model, excluding the detection layer,
which was initialized randomly. Subsequently, the
network underwent training on the fisheye training
dataset employing these new weights. Image
dimensions were adjusted to 256 x 256 pixels for
training input, using the resized images. Consistent
with the approach employed for other networks, we
employed a batch size of 1024 and maintained a
steady learning rate of 0.001. The training process
encompassed 560 epochs until the point of loss
saturation. Ultimately, the training loss
approximated 0.6 at the conclusion of the training
phase. Evaluation Metrics Evaluation metrics such
as Precision, Recall, Average Precision, and
Intersection Over Union (IOU) were selected for
assessment. The evaluation process encompasses
several fundamental concepts, including: True
Positive rate (TP): A correct detection False
Positive rate (FP): A wrong detection False
Negative rate (FN): A ground truth not detected
True Negative rate (TN): Does not apply.

III. RESULTSAND DISCUSSION
The subsequent Figures, labeled as Figs. 5, 6, 7,

and 8, illustrate the distribution of True Positives
(TP), False Positives (FP), and False Negatives (FN)
for the three networks. The test dataset
encompasses a total of 4,246 distinct objects.
Across all three graphs, the green line corresponds
to the ground truth, the blue line represents true

positives, the red line signifies false positives, and
the yellow line denotes false negatives. Upon
analyzing these presented graphs, it becomes
evident that YOLOv3 achieves the highest true
positive rate among the three models, whereas
ResNet-50 exhibits the highest false negative rate
across various Intersection Over Union (IOU)
thresholds. Additionally, a noticeable trend is the
gradual decline in model performance as the IOU
threshold increases.

Fig. 5 Detection metrics of YOLOv3.

Fig. 6 Detection metrics of Tiny-YOLOv3.
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Fig. 7 Detection metrics of ResNet-50.

Based on the provided Figures above, we computed
both Precision and Recall metrics. These
calculations were performed at an IOU threshold
with a scale difference of 0.1. Furthermore, Mean
Average Precision (mAP) was determined for the
three networks. This mAP was calculated using
three distinct IOU thresholds: 0.75, 0.50, and 0.25.
The ensuing table showcases the mAP values
(expressed as percentages). The results are
tabulated in Table I, while Figures 9 and 10
graphically depict the obtained outcomes.

Throughout the entirety of the project, the dataset
emerged as a pivotal challenge. The process of
dewarping fisheye images introduced a measure of
distortion, with objects positioned at the periphery
of the dewarped images exhibiting more

pronounced distortion than those in the central
region. This disparity in distortion resulted in the
models struggling to detect objects positioned at the
sides, consequently creating blind spots. Despite the
fisheye cameras boasting a 160-degree field of view,
the effective detection range narrowed down to 90
to 120 degrees due to the center-focused detection,
leading to blind spots surrounding the vehicle. In
terms of real-time performance, optimizing the
models assumes critical importance to enhance
detection speed, allowing for scalability across
multiple cameras. Furthermore, the optimization of
networks is crucial to curbing memory consumption,
a vital consideration when deploying models onto
embedded systems. It appears that the
implementation of models in the darknet version
might not be suitably optimized. In this context,
leveraging alternative library implementations such
as TensorFlow, renowned for its optimization
techniques, holds potential advantages, addressing
both adaptability and computational performance.

TABLE I. MEAN AVERAGE
PRECISION (MAP).

Fig. 8 F-measure comparison of three models.

IV. CONCLUSION

Based on the outcomes and subsequent
examination, it can be inferred that the null
hypothesis, which posits that the three DNNs
exhibit similar detection performance, can be
refuted. As such, we can embrace the
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alternative hypothesis that the detection
performance of the three DNNs varies. Our
efforts in training YOLOv3 model variants to
identify pedestrians within dewarped fisheye
images have proven fruitful. However, it is
important to note that the ResNet-50 model
has fallen short in generating satisfactory
detections.
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